Passive Solar – the unexplored value – Concepts Practice and Resources

Here is my house as the Aquatech boys were installing my solar water heater. But this is not the point of my post.  Today I would like to say a few worlds about the value of “Passive Solar”

My house site in the Compass – you are looking from the South. Most of the glass in the house is on this side. The windows on the North are very small.

You will also see an overhang at the roof. This keeps the sun from overheating at the height of the summer. We also have trees where I am taking the photo that also keep the sun from over heating us in mide summer.

In winter, the leaves drop from the trees and we get the full effect of the sun – especially in the spring.

The principle looks like this:

Here is a great short but complete post that explain these ideas more completely with some excellent resources added at the end:

Advantages of solar energy

Solar energy is a renewable resource that is environmentally friendly. Unlike fossil fuels, solar energy is available just about everywhere on earth. And this source of energy is free, immune to rising energy prices. Solar energy can be used in many ways – to provide heat, lighting, mechanical power and electricity.

Passive solar energy

Passive solar heating and cooling represents an important strategy for displacing traditional energy sources in buildings. Anyone who has sat by a sunny, south-facing window on a winter day has felt the effects of passive solar energy. Passive solar techniques make use of the steady supply of solar energy by means of building designs that carefully balance their energy requirements with the building’s site and window orientation. The term “passive” indicates that no additional mechanical equipment is used, other than the normal building elements. All solar gains are brought in through windows and minimum use is made of pumps or fans to distribute heat or effect cooling.

All passive techniques use building elements such as walls, windows, floors and roofs, in addition to exterior building elements and landscaping, to control heat generated by solar radiation. Solar heating designs collect and store thermal energy from direct sunlight. Passive cooling minimizes the effects of solar radiation through shading or generating air flows with convection ventilation.

Another solar concept is daylighting design, which optimises the use of natural daylight and contributes greatly to energy efficiency. The benefits of using passive solar techniques include simplicity, price and the design elegance of fulfilling one’s needs with materials at hand.

Passive solar heating

Passive solar heating of buildings occurs when sunlight passes through a window, hits an object, is absorbed and converted to heat. The most efficient window orientation for heat gain is due south, but any orientation within 30 degrees of due south is acceptable. Once the heat has entered the building, various techniques come into play to keep and distribute it. Even in the Canadian climate, the prevention of overheating in the sun space presents one of the biggest challenges.

To let the sun in, a ratio of roughly eight per cent window to floor area is recommended for south walls. Although this number may seem small, it is important to remember it comes from the floor area, which is much larger than the wall area. Again, the control of overheating is a significant issue.

Once the heat is in, a well insulated and air-tight building envelope helps prevent heat loss and allows the solar heat to provide more of the heating needed. A crucial component of the energy-efficient building envelope is the window system. Where common double-glazed windows let heat escape, high performance windows, with insulated frames, multiple glazing, low-e coatings, insulating glass spacers and inert gas fills, can reduce heat loss by 50 to 75 per cent.

High efficiency windows, together with R-2000 levels of insulation and air-tight construction allow passive solar heating to cover a large proportion of heating needs in many locations. With the heat contained, often a simple ceiling fan or a forced air furnace fan (furnace burner off, of course) is all that is required for heat distribution. Using building envelope upgrades alone, up to 25 per cent of a building’s heating requirement can be gained with passive solar techniques.

A helpful technique to control overheating and extend warm conditions in the sun space once the sun is down is the use of heavy mass materials in the walls and floors. Quarry tile or stone on floors in a mortar bed, and one wythe of brick or double layers of gypsum board on walls, will absorb solar radiation, smooth out the peaks of solar gain, and slowly radiate heat back into the room when the sun is gone.

Some solar homes use a centrally located masonry wood heater to store heat. The bricks and stones surrounding the firebox absorb the solar gain or heat from short but intense firings and slowly radiate it into the room.

Passive Cooling

The need for air-conditioning in homes can be greatly reduced or even eliminated by using passive solar cooling. When designing with passive solar cooling, heat from solar radiation and heated air is kept from reaching the building. Internal heat gains from appliances and occupants are minimised and exhausted by natural ventilation.

External solar radiation can be reduced by fixed or adjustable shading devices, providing shading by using vegetation or by using special glazing in windows. External shading devices can reduce solar gains by up to 90 per cent, while still admitting a significant amount of indirect light.

External heat gain can also be controlled by good insulation, reduced window size and by the use of reflective materials in the walls and roof. At the building design stage, attention should also be paid to cross-ventilation and the direction of prevailing winds, the source of cooling nighttime breezes.

Daylighting

In designing a building it is important to consider the optimal use of daylight. The term “daylighting” refers to using the overall light of the surrounding sky to illuminate building spaces, not just direct sunlight. In large commercial buildings, daylighting can significantly reduce energy consumption and provide a more comfortable working environment. Correct daylighting design will not only reduce costs related to electrical lighting but will also reduce the need for air-conditioning in rooms heated by light bulbs or ballasts.

A good daylighting system will consider the following elements: the orientation and space planning of the spaces to be lit; the location, form and dimensions of the opening through which the daylight will pass; the location of internal surfaces which may be able to reflect the daylight and the location of movable or permanent objects which provide protection from excessive light or glare.

References

Allen Associates,
Passive Solar House Designs for Canada, (Ottawa: Canada Mortgage and Housing Corporation, 1989).
Baker, N.V., A. Fanchiotti, K.A. Steemers,
Daylighting in Architecture: A European Reference Book, (London: James and James, 1993).
Noble, Duncan and Robert K. Swartman,
The Canadian Renewable Energy Guide, (Burnstown: General Store Publishing House, 1995).

Information

For more information on renewable energy sources, active solar energy, passive solar energy, and photovoltaic solar energy, please contact:

Solar Energy Society of Canada Inc.
Tel: (613) 234-4151
Email: sesci@sympatico.ca

Canada Mortgage and Housing Corporation
Fanis Grammenos
Tel: (613) 748-2321
Email: fgrammen@cmhc.e-mail.com

Kortright Centre for Conservation 
Energy Theme Co-ordinator 
Tel: (905) 832-2289  
Email: kcc@interlog.com

Natural Resources Canada
Tel: (613) 996-6220
Email: rudy.lubin@nrcan.gc.ca

Ontario Hydro, Environment and Sustainable Development Division
Jackie Hennessy
Tel: (416) 592-8487
Email: jackie.hennessy@hydro.on.ca

Ontario Ministry of Environment and Energy
Tel: 1 (416) 325-4000
Advertisements

7 responses to “Passive Solar – the unexplored value – Concepts Practice and Resources

  1. Good information.
    I live in New York City, and I am looking for Energy Saving Devices and Solar and Wind Energy collecting devices for resale.
    I am also interested in passive systems that would work for apartment tenants as well as building owners and developers.
    Thank you in advance for your help.
    Jc French
    Skype Direct Logic or jcffrench

  2. Have a look on this site for the Resources – Stephen Howard – He is on PEI but is himself a reseller of many of the systems that you might be interested in

  3. I am a lecturer at The Federal University of Technology Akure,Nigeria.I have interest in studying on Passive Solar energy for my M.Phil/Ph.D programme.Could you link me with someone/groups that can help me with necessary information.Thank you.

  4. I suggest linking with Don Roscoe of Solar Nova Scotia. Don has devoted much of his professional career to designing and building passive solar homes. He also teaches courses across Canada and has a useful manual on the subject. In fact I think a new edition of the manual is scheduled to be released in 2009.

  5. Thats great!
    Solar water heaters—also called solar domestic hot water systems—can be a cost-effective way to generate hot water for your home. They can be used in any climate, and the fuel they use—sunshine—is free.

  6. Was this Passive Solar consept done in 1978 on PEI a place called Hillsborough Developement by a David Bergmark and can I get any results from that project. Thanks for your help

  7. Wanda
    The picture at the top is of my own house – David is a friend but not involved here.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s